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Abstract--Numerical simulation of laminar natural convection in a vertical cylinder is proposed. The 
cylinder is insulated at the bottom, laterally heated at a uniform heat flux density and cooled at the same 
flux at thm: top surface. The influence of the characteristic parameters of the problem on the steady-state 
solution is analysed (10’ < Ra < 106; 0.7 < Pr < 92.5 ; l/S < Al < 2). The fluid transient behaviour is also 
investigated. It is found that the stationary convective heat transfer is more important at the top surface 
for l/5 < Al < l/2 and is explicitly independent ‘of the Prandtl number. The steady-state flow presents a 
single roll pattern in all cases. On the other hand, in the transient phase a time-limited two-roll flow is 

predicted when Al < l/3. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 2. MATHEMATICAL MODEL 

If natural flows in rectangular boxes have been inten- 
sively investigat’zd, there are very few studies of natu- 
ral convection in vertical cylindrical enclosures. How- 
ever, these geometries are of great fundamental and 
practice interest to understand, for instance, con- 
vection phenomena in hydrocarbon storage tanks. 
Most studies in vertical cylinders deal with the Ray- 
leigh-BCnard problem, where a fluid layer is heated 
from below, cooled at its upper surface and generally 
laterally insulatl:d. In this configuration Neumann [l] 
used stability a-nalysis to determine the critical Ray- 
leigh number beyond which the axisymmetric modes 
are not stable. Figliola [2] has performed experiments 
and flow visualizations of the convection of a high 
Prandtl number fluid. In the same way, Guthmann et 
al. [3] found interesting experimental flow structures 
in large-aspect-ratio cavities. Liang et al. [4] dem- 
onstrated the influence of the temperature field initial- 
ization on the possibility of obtaining two steady- 
state solutions, one with upflow and the other with 
downflow at the centre of the cell. The work on the 
laterally heated fluid layer is much more limited. We 
can cite, for instance, the analysis of Huang et al. 

[5] who have simulated buoyancy-driven flows in a 
container heated from above and the side. 

The geometry of the problem is presented in Fig. 1. 
The flow is assumed to be laminar and two-dimen- 
sional. The hypothesis of axial symmetry seems to be 
reasonable because of the lateral heating, provided 
the aspect ratio be kept close to unity. The flow is 
governed by the macroscopic conservation equations 
written for an incompressible, Newtonian, zero-bulk- 
viscosity fluid. Besides, we apply the Boussinesq 
approximation, that is to say, density variations are 
taken into account only in the buoyancy term of the 
Navier-Stokes equation under the form 
p = pO( 1 -fi( T- To)). In the energy equation, we 
neglect compression work and viscous dissipation. 
Considering the fluids to be opaque or transparent in 
the infrared, radiative flux divergence doesn’t occur. 
Furthermore, except for the density in the Navier- 
Stokes equation, all physical properties are assumed 
to be constant. We obtain the following set of so- 
called Boussinesq equations written in their non-con- 
servative form : 

equation of continuity : 

v.v=o 

equation of momentum : 

Our paper concerns the numerical simulation of 
the flow which occurs in a vertical cylinder which is 
insulated at the bottom, laterally heated at a uniform 
heat flux density and cooled with the same flux on the 
ceiling. The main objective is, on the one hand, to 
understand the influence of the Rayleigh number, the 
aspect ratio and the Prandtl number on the steady- 
state solutions. and, on the other hand, to examine 
the fluid transient behaviour. 

PO% = -p”/qT-fi)g-Vp*+/Pv (2) 

equation of energy : 

dT 
-=aV27” 
dt’ 

To write the equations in axisymmetric coordinates 
we use the differential operators : 

(1) 
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NOMENCLATURE 

thermal diffusivity [m’ SC’] 
aspect ratio, H/D 
dimensional diameter [m] 
gravity [m s-*1 
Grashof number, g/?AToH3/v2 
dimensional height of the cylinder [m] 
average heat transfer coefficient 
m mm2 Km’] 
Nusselt numbers (Rayleigh 
configuration) 
Nusselt numbers (lateral heating 
configuration) 
Prandtl number, v/a 
hydrostatic pressure, p + pdz [Pa] 
Rayleigh number (Rayleigh 
configuration) 
Rayleigh number (lateral heating 
configuration), gpAToH3/av 
dimensionless radial coordinate 
dimensionless temperature 
dimensionless average temperature of 
sidewall 
dimensionless average temperature of 
fluid 
dimensionless time 
dimensionless velocity 
dimensionless radial velocity 
dimensionless axial velocity 
dimensionless axial coordinate. 

Greek symbols 

P thermal expansion coefficient [K-‘1 

dimensionless radial grid size 
dimensionless axial grid size 
relative error in convergence criteria 
thermal conductivity [w m-’ K-‘1 
dynamic viscosity [N s m-‘1 
kinematic viscosity [m’ s-l] 
dimensionless temperature or 
dimensionless modified vorticity 
density [kg rnp3] 
lateral flux density [w me21 
dimensionless stream function 
dimensionless vorticity 
dimensionless modified vorticity, rw. 

Subscripts 
b bottom of the cylinder 
C roof of the cylinder 
ce centre of the computational 

domain 
1 sidewall of the cylinder 
max maximum value 
min minimum value 
0 reference value 
t top surface of the cylinder. 

Superscript 
dimensional variable (used when a 
dimensionless variable of the same 
name occurs) 

k,n iteration indexes. 

uniform cooling flux density 

uniform heat 
flux density 

1 D,2 1 r 4 adiabatic bottom 

Fig. 1. Vertical cross-section of the studied geometry. 
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I 
[112 VI,, z VZu’- 5 (7) ar,! 

( 
l a$ aT 

P at ~--- r P~JCY > a~ ar 

[V’ lq,. = VW’. (8) 

The equations become in the (Y’, z’) coordinates : 
+;g+ &($+$) (18) 

I 
g+g,v=o (9) 

The initial and boundary conditions are expressed as : 

att=O: 

$(r, 290) = 0 

Q(u, z,O) = 0 

(10) T(r, z, 0) = 0 

onr=O: 

R=O 

aT 
-=O 

& 

on r = 1/(2Al) : 

We write equations (9)-(12) in the stream function- 
vorticity formalism by defining : 

i a*' 
u’=-- 

r’ aZf 

i aq 
v’= _-- 

r’ W 

ad au! of=---- 
aZf ar” 

(13) 

(14) 
onz=O: 

(15) 

To simplify the esquations, it is useful to set R’ = r’d. 
We choose as the length scale the height H of the 
cylinder. We use the initial temperature of the system 
To and A To = CD H/l as the reference temperature and 
reference temperature difference, respectively. The 
velocity scale is the velocity of a fluid particle which 
would be accelerated over H without viscous force, onz= 1: 

that is to say V. = dm. The time scale is obvi- 
ously defined as H/Vo. With these reference values, 
we define the following dimensionless variables : 
T=(T’-To)/A2”,,rj =$‘/(Vo’bHZ)and~=Q’/Vo.In 
their dimensionless form, the equations become : 

*=a’li, 
39 

aT A!!?=1 -= 
c% 1A To 

$+~&I 

n=* 
az2 

aT -_=O 
aZ 

Q=!Y 
a22 

(19) 

(20) 

(21) 

(24 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
_*__l~+!Y+!& 

r ar ar2 az2 
(16) 

aT 4HAl@ -_= 
a2 -z = -4A1. 
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The last condition describes the heat loss of the lat- 
erally entering flux through the top of the domain in 
order to obtain a steady-state solution. 

3. NUMERICAL METHOD AND ALGORITHM 

The non-conservative form of the equations is dis- 
cretized using a finite-difference method on a uniform 
grid. At first, the energy and vorticity equations are 
solved by the A.D.I. method [6], a purely implicit 
scheme in one direction over a half time step. The 
elliptic equation of the stream function is then solved 
by the over-relaxation Gauss-Seidel method. To allow 
a transient simulation, this last equation is solved at 
each time step, i.e. internal iterations are necessary to 
ensure the convergence. This iterative technique stops 
when the following convergence criterion is respected : 

The over-relaxation coefficient is chosen as 1.725. 
While the central difference scheme is systematically 
used for the diffusion terms, the hybrid cen- 
tral/upwind difference scheme is used for the con- 
vective terms according to the local value of the grid 
Peclet number. The resulting tridiagonal linear sys- 
tems are solved by the Thomas algorithm [7] which is 
not only fast but also convenient to treat the singu- 
larity at r = 0 often critical in cylindrical coordinates 
because of the l/r terms in the basic equations. In this 
algorithm, only the interior points are calculated by 
means of the basic equations obviously taking the 
boundary values into account. These boundary points 
are not calculated by means of the conservation equa- 
tions but are derived from Taylor series expansions of 
adjacent points. Besides, the axial velocity showed at 
r = 0 on the figures is calculated by a three points 
Taylor serie expansion using the fact that LJv/ar = 0 at 
r = 0. This procedure is only first-order accurate but 
this axial velocity is only used in the data processing. 
Before reaching the next time step, internal iterations 
are made to find the velocity of the convective terms : 
this procedure ensures an efficient coupling of the 
equations by these strongly non-linear terms, and 
second-order temporal precision in the A.D.I. method 
[8]. To keep a reasonable CPU time, one or two 
internal iterations are generally carried out. Lastly, 
average temperature of fluid and average temperature 
of sidewall are calculated by the Riemann integration 
method with 

T,,, = 8A12 S’ r Trdrdz, T, = 
i’ 

T,dz. (35) 
II 0 0 

In this paper, all the simulations result from transient 
calculations, in the sense that the Poisson equation is 
always correctly solved, so the steady-state solutions 
constitute the final states of the transient calculations. 
Numerically, we call ‘steady-state’ the solution 

reached when the code has converged, satisfying a 
criterion of the kind : 

maxlY+‘-~5”l <c 
max IFI 

(36) 

where 5 is T and 0. E is taken to be compatible with 
the time step so that the code marches far enough in 
time to describe the transient regime before reaching a 
steady-state. This is done by monitoring the transient 
evolution of several values, such as the stream func- 
tion at the centre of the computational domain. In 
most cases, for a typical time step of 10e2, E is chosen 
to be lo-‘. All numerical simulations result from vec- 
torized calculations performed on Cray C94 and C98. 
The time of a typical calculation, for an 8 1 x 8 1 uni- 
form grid, is on order of 15 min CPU. 

4. NUMERICAL TESTS 

4.1. Rayleigh conjiguration 
We have tested our code by investigating the flow 

which occurs in a fluid layer in the Rayleigh con- 
figuration, i.e. heated from below and cooled from 
above with isothermal top and bottom walls and with 
an insulated lateral wall. No-slip conditions are 
assumed at all walls. 

Figure 2 shows the cross-section of the stationary 
solution of the flow in an air-filled cylinder for 
Al= 1/2,R=5000andPr=0.7.An81x81uniform 
grid was fine enough to obtain the average Nusselt 
number Nub at the bottom nearly identical to the 
average Nusselt number Nu, at the top (conservation 
of the energy). NM, and Nu, are defined by : 

(37) 

The relative difference between Nub and NM, is less 
than 1%. These simulations confirm two interesting 
features of the flow already pointed out by Liang et 
al. [4]. It is also particularly interesting to compare 
our results with the 3D calculations of an axi- 
symmetric flow performed by Schneider et al. [9]. The 
convective flow depends on the initial temperature 
field. In our example, setting initial temperatures to 
zero everywhere induces an upflow at the centre of the 
cylinder. On the contrary, if buoyancy is increased 
by initial conditions, for instance with an initial hot 
penultimate column of the computational domain, a 
downflow is induced at the centre. It can also be seen 
that the centre of the toroidal roll is slightly shifted 
upwards in the case of upflow and downwards in the 
case of downflow. This asymmetry has been en- 
countered both numerically and experimentally by 
Liang et al. [4]. 

4.2. Lateral heating and upper cooling at uniformJEux 
density 

To determine the influence of the mesh, we respec- 
tively tested 21 x21. 41 x41, and 81 x81 uniform 
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Fig. 2. Stationary flow in the Rayleigh configuration; Al = l/2; R = 5000; Pr = 0.7; (a) upflow at the 

centre, V,,,,, = 0.353; (b) downflow at the centre, Vmilx = 0.353. 

Table 1. Mesh influence 

Mesh 21 x21 41 x41 81 x81 221 x221 

0.1282x 10-l 0.1880x10-' 0.2001x10~' 0.1993x10-' 
0.2176x 10-l 0.1991x10-' 0.2008x10-' 0.2013~10~' 

V max 0.4706 0.4548 0.4550 0.4552 
N% 28.96 25.36 24.29 23.99 
Nu, 14.02 14.59 14.42 14.37 

grids by comparing results with a reference calculation 
performed on a 221 x 221 regular mesh. The par- 
ameters of these simulations are Gr = 1.4 x 105, i.e. 
Ra = 105, Pr = 0.7 and Al = l/2. We first ensured 
energy conservation, which is not guaranteed by a 
non-conservative discretization. Initializing all the 
temperatures to zero, the dimensionless average tem- 
perature of the stationary solution is on order of 10m4. 
By monitoring several variables, Table 1 indicates that 
a 41 x 41 mesh can be adequate. However, Figs. 3 and 
4 show that the 8 1 x 8 1 grid ensures a better resolution 
of the near-wall flows. As the calculation times remain 
reasonable, the :31 x 81 uniform grid is used or, more 
exactly, as we vary the aspect ratio, in most cases we 
keep a constant resolution of Av = AZ = 1.25 x lo-‘. 

5. RESULTS AND DISCUSSION 

For the purpose of this parametric study, the dimen- 
sionless numbers varied over the following ranges : 

10’ < Ra < lo6 (38) 

0.7 < Pr ,< 92.5 (39) 

Although the code is not theoretically the best adapted 
to detect the eventual appearance of a physically oscil- 
lating final state because of the damping effect of 
the hybrid scheme, it is interesting to note that the 
maximum Grashof number at which a steady-state is 
reached decreases as the cylinder becomes flatter. This 
seems logical since an increasingly flatter cylinder ‘for- 
gets’ the stabilizing effect of the sidewall as it nears 
the Rayleigh configuration. Because of the upper 
cooling, we must keep in mind that our problem is a 
combination of Rayleigh and lateral heating con- 
figurations. In the former, it is well known that stable 
axisymmetric solutions are limited to small Rayleigh 
numbers [l, 91. So it was felt that the assumption of 
two-dimensional flow could be more and more haz- 
ardous as the aspect ratio becomes smaller and conse- 
quently could make some results of the parametric 
study unrealistic for high Rayleigh number/small 
aspect ratio configuration where a linear stability 
analysis or 3D calculations should be necessary to 
assess the validity of the axial symmetry assumption. 
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Fig. 5. Stationary flow under lateral heating; Al = l/4; Ra = 105; Pr = 0.7; T,,,,, (black) = 0.23; T,,,,, 

(white) = -0.39; V,,, = 0.352. 

Nevertheless, we have made small aspect ratio cal- 
culations for two reasons : 

?? we believe that the influence of the lateral heating 
is still important for small aspect ratio, provided we 
restrict to steady-state flows ; 

?? real cylindrical tanks are often partially filled and 
result in small aspect ratio fluid domain (AZ < 1). 

In this paper, the maximum calculated Grashof num- 
ber-the parameter effectively present in the equa- 
tions-is Gr = 1.4 x 106, which corresponds to the 
cases Ra = 106, Pr = 0.7 and Al 2 l/2. The Prandtl 
numbers range is over three orders of magnitude. 
Pr = 0.7 corresponds to air and, more generally, most 
gases at 300 K. Pr = 7 corresponds to water at 293 K 
and Pr = 92.5 ‘corresponds to ethylene glycol at 
313 K. 

We first present stationary solutions and their sens- 
ibility to the control parameters. We then consider the 
transient behaviour of the fluid flow. 

5.1. Stationary solutions 
Flow structure and temperature jield. Perhaps the 

most important feature to mention is that, in all cases 
studied, the flow presents a single toroidal roll (Figs. 
5-8). This structure is conserved even at a relatively 
flat aspect ratio (AZ < l/4). The plotted velocity vec- 

tors show clearly that the flow is much faster in the 
centre, obviously to ensure mass conservation in a 
horizontal cross-section. Figure 9 shows the influence 
of the Rayleigh number for an air-filled box with 
Al = l/2. At low Ra, near a conductive regime, the 
isotherms are slightly deformed by the movement, 
with the highest temperature in the lower corner of 
the cylinder. As Ra increases, the isotherms become 
much more deformed with a clear homogenization of 
the hot area along the sidewall due to the upward 
buoyancy-induced flow. In Figs. 5-8, the temperature 
fields show that the ‘cold zone’ expands on the sidewall 
as the aspect ratio increases. It must be noted that the 
minimum temperature, obviously located at the centre 
of the cold ceiling, decreases as the aspect ratio 
increases, while the maximum temperature remains 
almost constant between AI = l/5 and Al = 1. Fur- 
thermore, the maximum temperature at the sidewall 
is located in the range 0.7 < z d 1. We note that this 
maximum approaches z = 1 as AZ increases from 0.25 
to 1, both for Pr = 0.7 and Pr = 7. In the case of 
gases (Pr = 0.7) and Al = 2, the maximum sidewall 
temperature is located at the bottom (z = 0), which is 
coherent with the fact that the ‘cold zone’ expands as 
the aspect ratio increases. It can also be observed 
that the Prandtl number affects the flow structure. As 
illustrated in Fig. 10, the centre of the toroidal roll is 
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shifted below the z = 0.5 plane as Pr decreases. The 
maximum velocity (plotted in Figs. 11 and 12) gives 
an idea of the intensity of the flow. Increasing the Ra 
number enhances the maximum velocity. For AZ = l/2 
and a constant Ra, there is an increase of the 
maximum velocity with decreasing Prandtl number. 
Figure 12 shows the influence of the aspect ratio on 
the maximum velocity, for Pr = 0.7. For 
Ra < 2.5 x 104, the maximum velocity is attained for 
Al = l/2. When Ra > 2.5 x 104, the maximum is 
attained for Al = 1. 

Heat transfer. The average Nusselt numbers are 
defined by the following equations : 

At the sidewall : Nu, = hDj1, where h = cD/(c - rm) 

==Nu, = l/(AIJT,--T,I). (41) 

At the top of the domain : Nu, = hD/n, where 
h = 4Al@/( r:, - r:) 

*NuC =4/(lT,--T,I). (42) 

Figure 13 shows that the convection heat transfer 
both on the side and the top of the domain does not 

the implicit dependence since the Rayleigh number 
definition includes the Prandtl number) that is to say 
NM,,, depends on the product G? Pry where the powers 
x and y are identical. Thus in this case the Rayleigh 
number is more convenient to describe the convection 
heat transfer. For the case plotted, AI = l/2 but the 
result is confirmed for Al = l/4 and Al = 1. In Fig. 
14, for a Prandtl number of 0.7 and varying AI in the 
range l/5 < Al < 2, we see that the convective heat 
transfer at the top of the domain is enhanced by 
increasing Ra and decreasing Al for a constant Ra 
number, but two kinds dependence of evolution 
clearly exist: for Al > l/3, the Nusselt number 
increases with the same concavity. In this case, the 
following numerical correlation has been found (Fig. 
15) : 

Nu, = O.SSAl-’ 2X Ra’ ” (43) 

with 10’ < Ra < lo6 and l/2 < Al < 2. 
For the case where A/ < l/3, the graphs present 

an inflection point, that is to say the increasing heat 
transfer is enhanced for lo3 < Ra < 104. The lateral 

explicitly depend on the Prandtl number (we except convective heat transfer (Fig. 16), as at the top of the 
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cylinder, is enhanced with increasing Ra and decreas- 
ing Al for a constant Ra number, except for Al = 1 
and Al = 2 where the heat transfer is little influenced 
by Ra. The following correlations have been found 
(Figs. 17 and 18) : 

Nu, = 0.86Al-0.75Ra0~2 

with104~Ra~106and1/2~Al~1 

(44) 

Nu, = 0..54Al-0.74 Ra0.24 (45) 

with lo3 < Ra < 1.0’ and l/5 < Al < l/3. 
Finally, Figs. 11-16 show that the convective heat 

transfer is more important at the top surface for 

l/5 < Al < l/2, even when the lateral surface becomes 
larger than the top surface, that is when Al > l/4. 

5.2. Transient calculations 
For Pr = 0.7 and Pr = 7, the study of the transient 

phase before reaching a steady-state reveals an inter- 
esting behaviour. A two-roll solution has indeed been 
found : this flow structure is time-limited and occurs 
when the cylinder is flat enough, that is when Al < l/3 
at Ra = lo’, both for Pr = 0.7 and Pr = 7. Figure 19 
shows a transient sequence for Ra = 105, Pr = 7 and 
Al = l/3. Initially, a single roll develops near the side- 
wall of the cylinder. Then the roll progressively grows 
with a concomitant inward shift to the centre of the 
cell. At t = 21, a second roll is induced near the top 
surface: an upflow is consequently induced at the 
centre of the cylinder. The first counterclockwise roll 
continues to grow until it becomes predominant. 
Finally, the flow becomes unicellular again at t = 42 
and this single roll structure remains until the steady- 
state hqs been reached. The occurrence of this two- 
roll transient flow seems to be a general feature enco- 
untered by several authors in different configurations 
and scales, studying petroleum flow in a cylindrical 
tank [lo], solidification in a rectangular enclosure [I l] 
or cooling of a square cavity [12]. In our case, this 
structure may be explained in the following way: 
initialli, the near sidewall roll is not vigorous enough 
to extend over the entire cylinder. The fluid rises along 
the sidewall and turns at the top sidewall corner and 
moving inward under the top surface. The top surface 
cools this inward flow which becomes denser, and the 
fluid moves away from the sidewall effect, that is from 
the origin of the buoyancy forces. The influence of the 
viscous forces then becomes important and conse- 
quently, the inward flow decelerates and turns down- 
ward. There is then probably a drawing effect which 
induces a clockwise roll which subsits until the 
counterclockwise roll becomes energetic enough to 
overcome the second cell. Furthermore, as suggested 
by Cotter and Charles [lo], vorticity can be generated 
by a radial temperature gradient, as can be seen from 
equation (17). In the near sidewall roll the upward 
flow carries hot fluid inducing a positive radial tem- 
perature gradient which in turn induces negative vor- 
ticity. The two-roll flow could result from a com- 
bination of the drawing effect and temperature 
gradient generated vorticity. 

6. CONCLUSION 

In this work, numerical simulations have been per- 
formed in order to study the buoyancy-induced flow 
in a laterally heated vertical cylinder. By varying the 
dimensionless numbers which characterize the prob- 
lem and by examining the flow structure, the following 
points can be made. All the stationary solutions pre- 
sent a single roll pattern. The convective heat transfer 
does not explicitly depend on the Prandtl number. On 
the contrary, the convective heat transfer is enhanced 
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Fig. 9. Streamlines and isotherms for Al = l/2 and Pr = 0.7; (a) Ra = 105, T,,,,, = 0.21, T,,, = -0.52, 
AT = 0.066, I+&,,, = 
Ra = lo’, T,,,,, 

0.0224; (b) Ra = 104, T,,,,, = 0.30, T,,,,, = -0.69, AT = 0.09, $,,_, = 0.0307; (c) 
= 0.50, T,,,, = -0.93, AT = 0.13, $,,, = 0.02; (d) Ra = lo’, T,,,,, = 0.58, T,,,,, = -0.92, 

AT = 0.137, I/J,“., = 0.0044. 
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Fig. 10. Streamlines and flow field for Al = l/2 and Ra = 105; (a) Pr = 92.5, V,,,,, = 0.07, tirnilx = 0.0022; 
(b) Pr = 0.7, V,,, = 0.455, timax = 0.0224 (flow fields have different velocity scales). 
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Fig. 11. Maximum velocity vs Rayleigh number for various Prandtl numbers (Al = l/2). 



Laminar natural convection in a laterally heated and upper cooled vertical cylindrical enclosure 

0.50 1 ! I , 

0.40 -. 

0.30 - 

I 
e--e AI-16 
~-f3 AI=114 
-AI=1/3 
H AI=112 
- Al=1 
- Al,7 

50.0 

40.0 

30.0 

z' 

20.0 

10.0 

0.0 
-11 

Fig. 12. Maximum velocity vs Rayleigh number for various aspect ratios (Pr = 0.7) 
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Fig. 13. Top and lateral average Nusselt number vs Rayleigh number for various Prandtl numbers 
(AI = l/2). 
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Fig. 14. Top Nusselt number vs Rayleigh number for various aspect ratios (Pr = 0.7). 
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Fig. 15. Top Nusselt number vs Rayleigh number and numerical correlation Nu, = 035AI- 25Rao.zs. 
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Fig. 16. Lateral Nusselt number vs Rayleigh number for various aspect ratios (Pr = 0.7). 
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Fig. 17. Lateral Nusselt number vs Rayleigh number and numerical correlation Nu, = 0.86AI-0-75Ra02. 
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Fig. 18. Lateral Nusselt number YS Rayleigh number and numerical correlation Nu, = 0.54AI-074Ra0.24. 
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Fig. 19. Transient flow field for Ra = lo’, Pr = 7, Al = l/3; (a) t = 14, V__ = 0.044; (b) t = 21, 
V max = 0.074; (c) f = 28, V,,,,, = 0.125 ; (d) t = 35, l’,,. = 0.109 (the visualizations have the same velocity 

scale). 

when the asplect ratio or the Rayleigh number 
increases at both the top and lateral surfaces, except 
for Al = 1 and Al = 2 where the lateral Nusselt num- 
ber is little influenced by the aspect ratio and Rayleigh 
number. The convective heat transfer is more impor- 
tant at the top surface for l/5 < Al < l/2. Numerical 
correlations have been determined for both the top 
and lateral surfaces. Finally, the maximum velocities 
appear when l/2 < AZ < 1. In the transient phase of 
cases where Al < l/3, a time-limited two-roll flow has 
been predicted This phenomenon could result from 

the combination of a drawing effect of the near side- 
wall cell and temperature gradient generated vorticity. 
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